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Introduction: 
 
This report is to fulfill the tournament analysis report portion of Udacity’s AI Nano Degree 
program, Project: Build a Game-Playing Agent.  During this project a custom Isolation Game 
Playing Agent was written with multiple ‘scoring’ algorithms.  The goal is to develop a scoring 
algorithm that is superior to the built-in, provided algorithms. 
 
Test 1 
 
The first test was constructed with a simple hypothesis; that a variable weighting of 
(#OUR_MOVES) - (#THEIR_MOVES) would produce a viable scoring algorithm.  This 
tournament was ran with the following weighting. 
 
custom_score: #OUR_MOVES * 2 - #THEIR_MOVES 
custom_score_2: #OUR_MOVES * 4 - #THEIR_MOVES 
custom_score_3: #OUR_MOVES * 8 - #THEIR_MOVES 
 
This resulted in Fig 1.  At first this looks as if AB_Custom_3 resulted in a much better win/lose 
rate.  To be certain, a test for statistical significance is required though.  I conducted a 2-sample 
T-Test between each pair of Opponents.  While ANOVA could have been performed, the six 
T-Tests were not cumbersome and there was high hopes that at least one pair would be 
statistically significant. 
 



 
 
The results of the T-Tests can be found in this Tournament Stats Google Sheet. 
 
 
T-Tests Results 
 
The results of the T-Tests can be viewed in Fig 2.  With an Alpha of 0.05, and performing a 
2-tailed test our T-Critical value is 2.179, well outside of the range of any of the T-Tests.  This 
confirms our default Null Hypothesis and there is no statistical significance between any of 
these tests.  
 
A perfect ‘false’ game was constructed under the heading AB_Perfect to see what kind of 
win/lose rate would be significant.  A scoring algorithm would need a win rate of 85.7% to be 
significantly better than the worst performing AB_Improved. 
 

 
 
 
 

https://drive.google.com/open?id=1w-K3YhT9caZcVmskKKmg8G07X1Jdey9bv9hsrOAogEI


Test 2: Searchable Space 
 
Not content with a losing algorithm, I constructed my own tournament that would search for a 
Theta0, Theta1, and Theta2 such that 
 
Score = Theta0 + Theta1 * #OUR_MOVES + Theta2 * #THEIR_MOVES 
 
This tournament executed from [-11, -11, -11] to [11, 11, 11] skipping every other value, so that 
-11, -9, -7… were used.  This helped reduce the search space while still providing a gage on the 
direction of the algorithm.  This data is available in the ‘Solution Search’ tab of the Tournament 
Stats SpreadSheet linked above.  Sorted for minimal loses, Fig 3 shows the best performing 
Thetas.  These values were then put into the custom_score, custom_score_2, and 
custom_score_3 functions and the tournament.py application ran again, as seen in Fig 4. 
Resulting in even worse performance. 
 

 
 

 
  



Test 3: Minimax V AlphaBeta 
 
One addition test was to compare the Minimax matches against the AlphaBeta matches.  A 
pivot table was created to group all MM matches in one dataset and all AB matches in another. 
Fig 5 shows the results of the T-Test, predicting that the difference between Minimax and 
AlphaBeta with greater than 99.9% probability.  This is consistent with our intuition that an 
AlphaBeta prune will allow for a deeper search in the same amount of time, more accurately 
predicting each branches success. 
 

 
Conclusion 
 
It appears as if the algorithms constructed and tested in this experiment and used to score each 
tournament has little bearing on the outcome of the game.  It is possible that there are scoring 
algorithms that are statistically significant from the provided ones, but that must be left for further 
research.  The search implementation however has a much greater impact on the winning 
outcome of the game, with AlphaBeta pruning surpassing naive MiniMax with 99.9% 
confidence. 


