
Tournament Analysis
By

Kenneth R. Farr III
www.kennethfarr.com

Introduction:

This report is to fulfill the tournament analysis report portion of Udacity’s AI Nano Degree
program, Project: Build a Game-Playing Agent. During this project a custom Isolation Game
Playing Agent was written with multiple ‘scoring’ algorithms. The goal is to develop a scoring
algorithm that is superior to the built-in, provided algorithms.

Test 1

The first test was constructed with a simple hypothesis; that a variable weighting of
(#OUR_MOVES) - (#THEIR_MOVES) would produce a viable scoring algorithm. This
tournament was ran with the following weighting.

custom_score: #OUR_MOVES * 2 - #THEIR_MOVES
custom_score_2: #OUR_MOVES * 4 - #THEIR_MOVES
custom_score_3: #OUR_MOVES * 8 - #THEIR_MOVES

This resulted in Fig 1. At first this looks as if AB_Custom_3 resulted in a much better win/lose
rate. To be certain, a test for statistical significance is required though. I conducted a 2-sample
T-Test between each pair of Opponents. While ANOVA could have been performed, the six
T-Tests were not cumbersome and there was high hopes that at least one pair would be
statistically significant.

The results of the T-Tests can be found in this Tournament Stats Google Sheet.

T-Tests Results

The results of the T-Tests can be viewed in Fig 2. With an Alpha of 0.05, and performing a
2-tailed test our T-Critical value is 2.179, well outside of the range of any of the T-Tests. This
confirms our default Null Hypothesis and there is no statistical significance between any of
these tests.

A perfect ‘false’ game was constructed under the heading AB_Perfect to see what kind of
win/lose rate would be significant. A scoring algorithm would need a win rate of 85.7% to be
significantly better than the worst performing AB_Improved.

https://drive.google.com/open?id=1w-K3YhT9caZcVmskKKmg8G07X1Jdey9bv9hsrOAogEI

Test 2: Searchable Space

Not content with a losing algorithm, I constructed my own tournament that would search for a
Theta0, Theta1, and Theta2 such that

Score = Theta0 + Theta1 * #OUR_MOVES + Theta2 * #THEIR_MOVES

This tournament executed from [-11, -11, -11] to [11, 11, 11] skipping every other value, so that
-11, -9, -7… were used. This helped reduce the search space while still providing a gage on the
direction of the algorithm. This data is available in the ‘Solution Search’ tab of the Tournament
Stats SpreadSheet linked above. Sorted for minimal loses, Fig 3 shows the best performing
Thetas. These values were then put into the custom_score, custom_score_2, and
custom_score_3 functions and the tournament.py application ran again, as seen in Fig 4.
Resulting in even worse performance.

Test 3: Minimax V AlphaBeta

One addition test was to compare the Minimax matches against the AlphaBeta matches. A
pivot table was created to group all MM matches in one dataset and all AB matches in another.
Fig 5 shows the results of the T-Test, predicting that the difference between Minimax and
AlphaBeta with greater than 99.9% probability. This is consistent with our intuition that an
AlphaBeta prune will allow for a deeper search in the same amount of time, more accurately
predicting each branches success.

Conclusion

It appears as if the algorithms constructed and tested in this experiment and used to score each
tournament has little bearing on the outcome of the game. It is possible that there are scoring
algorithms that are statistically significant from the provided ones, but that must be left for further
research. The search implementation however has a much greater impact on the winning
outcome of the game, with AlphaBeta pruning surpassing naive MiniMax with 99.9%
confidence.

